Math, asked by vinayravikumar512, 5 months ago

For what values of a and b will
F(X)={ax,. X<2
{ Ax2- bx +3, X>=2
Be differentiable for all values of x​

Answers

Answered by vijayaranisolipeta78
0

Answer:

Answer

We have,

f(x)={

x

2

+3x+a,

bx+2,

x≤1

x>1

(LHD at x=1)=lim

x→ 1

x−1

f(x)−f(1)

=lim

h→ 0

1−h−1

f(1−h)−1

=lim

h→ 0

−h

[(1−h)

2

+3(1−h)+a]−(1+3+a)

=lim

h→ 0

−h

1+h

2

−2h+3−3h+a−4−a

=lim

h→ 0

−h

h

2

−5h

=lim

h→ 0

−1

h−5

=5

Now,

(RHD at x=1)=lim

x→ 1

+

x−1

f(x)−f(1)

=lim

h→ 0

1+h−1

f(1+h)−1

=lim

h→ 0

h

[b(1+h)+2]−(b+2)

=lim

h→ 0

h

b+bh+2−b−2

=lim

h→ 0

h

bh

=b

Since, f(x) is differentiable, so

(LHD at x=1)=(RHD at x=1)

b=5

And f(1)=1+3+a=4+a

Now,

LHL=lim

x→ 1

f(x)

LHL=lim

h→ 0

f(1−h)

LHL=lim

h→ 0

(1−h)

2

+3(1−h)+a

LHL=1+3+a=4+a

Now,

RHL=lim

x→ 1

+

f(x)

RHL=lim

h→ 0

f(1+h)

RHL=lim

h→ 0

b(1+h)+2

RHL=b+2

Since, f(x) is continuous, so

LHL=RHL

4+a=b+2

4+a=5+2

a=7−4=3

Hence, a=7 and b=5.

Hence, this is the answer.

if this answer is helpful to you please mark me as a brain list

Similar questions