Math, asked by muskanra455, 4 months ago

For what values of a does the Equation cos 2x + a sin x = 2a - 7 possesses a real solution?

Answers

Answered by Anonymous
42

Given:

  • cos 2x +  \alpha sin x = 2 \alpha - 7

Solution:

 \\ \colon\implies{\tt{ cos \ 2x + \alpha \ sin \ x = 2 \alpha - 7 }} \\ \\ \\ \colon\implies{\tt{ 1 - 2 \ sin^2 x + \alpha \ sin \ x = 2\alpha- 7 }} \\ \\ \\ \colon\implies{\tt{ 2 sin^2 x - \alpha \ sin \ x + 2\alpha - 8 = 0 }} \\

Discriminant,

D = (- \alpha )² - 4 × 2 (2 \alpha - 8)

 \implies  \alpha ² - 16  \alpha + 64

 \implies ( \alpha - 8)²

For Real values of x,

D ≥ 0 ( \alpha - 8)² ≥ 0

 \\ \colon\implies{\tt{ sin \ x = \dfrac{ \alpha \pm ( \alpha - 8)}{4} }} \\ \\ \\ \colon\implies{\tt{ -1 \leq sin \ x \leq 1 }} \\ \\ \\ \colon\implies{\tt{ -1 < \dfrac{ \alpha \pm ( \alpha - 8) }{4} < 1 }} \\ \\ \\ \colon\implies{\tt{ -4 \leq \alpha \pm ( \alpha - 8) \leq 4 }} \\ \\ \\ \colon\implies{\tt{ -4 \leq 2 \alpha - 8 \leq 4 }} \\ \\ \\  \colon\implies{\tt{ -4 + 8 \leq 2 \alpha \leq 4 + 8 }} \\ \\ \\ \colon\implies{\tt{ 4 \leq 2 \alpha \leq 12 }} \\  \\ \\ \colon\implies{\tt{ 2 \leq \alpha \leq 6 }} \\

Hence,

  • For real value of x = 2  \alpha ≤ 6 .
Similar questions