Math, asked by tolalemma, 4 months ago

For what values of c are the vectors 3i-2j and 2i+3j + ck are perpendicular​

Answers

Answered by MaheswariS
6

\textbf{Given:}

\textsf{Vectors}\;\mathsf{3\overrightarrow{i}-2\overrightarrow{j}+0\overrightarrow{k}\;\;and\;\;2\overrightarrow{i}+3\overrightarrow{j}+c\overrightarrow{k}\;are\;perpendicular}

\textbf{To find:}

\textsf{The value of 'c'}

\textbf{Solution:}

\textbf{Concept used:}

\boxed{\begin{minipage}{7cm}$\\\textsf{If two vectors are perpendicular, then their}\\\\\textsf{Scalar product is zero}$\end{minipage}}

\implies\mathsf{(3\overrightarrow{i}-2\overrightarrow{j}+0\overrightarrow{k})\,.\,(2\overrightarrow{i}+3\overrightarrow{j}+c\overrightarrow{k})=0}

\implies\mathsf{3(2)+(-2)(3)+0(c)=0}

\implies\mathsf{6-6=0}

\implies\mathsf{0=0}

\textsf{It shows that the scalar product vanishes independent of c}

\therefore\textsf{c can take any real value }

Answered by leminegeso1
0

Answer: C can be any number

Step-by-step explanation:  Let A=|3i - 2j| and B=|2i + 3j + ck|

A.B = 0 for two perpendicular vectors

|3i - 2j + 0k|.|2i +3j +ck| = 0

(3i)(2i) + (-2j)(3j) + (0k)(ck) = 0

6 - 6 + 0c = 0

0c = 0

since any number multiplied by zero is zero the value of c can be any number.

Similar questions