For what values of k,-4 is a zero of the poynomial x^2-x-(2k+2)?
Answers
Answered by
3
Given -4 is the zero of polynomial.( it means the value of equation is zero when x=-4)
i.e, x=-4…., substitute this in the equation x^2-x-(2k+2)
(-4)^2-(-4)-(2k+2)=0
16+4-(2k+2)=0
20–2k-2=0
18–2k=0
2k=18
k=18/2
k=9
there fore, -4 is the zero of polynomial for value of k is 9
@skb
i.e, x=-4…., substitute this in the equation x^2-x-(2k+2)
(-4)^2-(-4)-(2k+2)=0
16+4-(2k+2)=0
20–2k-2=0
18–2k=0
2k=18
k=18/2
k=9
there fore, -4 is the zero of polynomial for value of k is 9
@skb
Answered by
26
Given : The value of X which is (-4)
To find : The value of k
Equation : x^2-x-(2k+2)
Zero of the polynomial,
x^2-x-(2k+2) = 0
Let's substitute the value of x,
(-4)^2 - (-4) - ( 2 k + 2) = 0
16 + 4 - ( 2 k + 2 ) = 0
20 - 2k - 2 = 0
18 - 2k = 0
2k = 18
k =
k = 9
Verification :
(-4)^2 - (-4) - ( 2 (9) + 2)
16 + 4 - ( 2 (9) + 2)
18 - 18
= 0
Hence, the value of k is 9
Similar questions