for what values of k are the roots of the quadratic equation 3x²+ 2kx+27=0 real and equal?
Answers
Answered by
10
Answer:
Let's solve for k.
3x2+2kx+27=0
Step 1: Add -3x^2 to both sides.
2kx+3x2+27+−3x2=0+−3x2
2kx+27=−3x2
Step 2: Add -27 to both sides.
2kx+27+−27=−3x2+−27
2kx=−3x2−27
Step 3: Divide both sides by 2x.
2kx/2x=−3x2−27/2x
k=−3x2−27/2x
Step-by-step explanation:
plz plz follow me if the answer helpful to you
Answered by
4
a=3
b=2k ; b^2=4k^2
c=27
b^2-4ac=0
b^2=4ac
4k^2=4(3×27)
divide by 4
k^2=81
k=+_9 (plus or minus 9)
so the equation is
3x²+_18x+27=0
divide by 3
x²+_6x+9=0
so
x²+6x+9=0 x²-6x+9=0
x²+3x+3x+9=0 x²-3x-3x+9=0
x (x+3)+3 (x+3)=0 x (x-3)-3 (x-3)=0
x+3=0 x-3=0
x= -3 x= +3
Similar questions