for what values of k,the HCF of x2+x-(2k+2) and 2x2+kx-12 is x+4
Answers
Answer:
k = 5
Step-by-step explanation:
Given :
HCF of {x² + x - (2k + 2) , 2x² + kx - 12} is (x + 4)
Find k,.
Solution :
HCF of {x² + x - (2k + 2) , 2x² + kx - 12} is (x + 4)
⇒ (x + 4) is a factor of both the equations,.
⇒ when x² + x - (2k + 2) , is divided by (x + 4), it gives 0 , as remainder
⇒ If, x + 4 = 0
⇒ x = -4
⇒ x² + x - (2k + 2) = 0
⇒ (-4)² + (-4) - (2k + 2) = 0
⇒ 16 - 4 - 2k - 2 = 0
⇒ 10 - 2k = 0
⇒ 2k = 10 ⇒ k = 5,.
One of the value of k is 5,.
__
⇒ (x + 4) is a factor of both the equations,.
⇒ when 2x² + kx - 12 , is divided by (x + 4), it gives 0 , as remainder
⇒ If, x + 4 = 0
⇒ x = -4
⇒ 2x² + kx - 12 = 0
⇒ 2(-4)² + K(-4) - 12 = 0
⇒ 2(16) - 4k - 12 = 0
⇒ 32 - 4k - 12 = 0 ⇒ 20 - 4k = 0
⇒ 4k = 20 ⇒ k = 5,.
∴ The only value of k is 5,.
Answer:
k = 5
Step-by-step explanation
Given : HCF of {x² + x - (2k + 2) , 2x² + kx - 12} is (x + 4)
Find k,.
Solution :
HCF of {x² + x - (2k + 2) , 2x² + kx - 12} is (x + 4)
⇒ (x + 4) is a factor of both the equations,.
⇒ when x² + x - (2k + 2) , is divided by (x + 4), it gives 0 , as remainder
⇒ If, x + 4 = 0
⇒ x = -4
⇒ x² + x - (2k + 2) = 0
⇒ (-4)² + (-4) - (2k + 2) = 0
⇒ 16 - 4 - 2k - 2 = 0
⇒ 10 - 2k = 0
⇒ 2k = 10 ⇒ k = 5,.
One of the value of k is 5,.
__
⇒ (x + 4) is a factor of both the equations,.
⇒ when 2x² + kx - 12 , is divided by (x + 4), it gives 0 , as remainder
⇒ If, x + 4 = 0
⇒ x = -4
⇒ 2x² + kx - 12 = 0
⇒ 2(-4)² + K(-4) - 12 = 0
⇒ 2(16) - 4k - 12 = 0
⇒ 32 - 4k - 12 = 0 ⇒ 20 - 4k = 0
⇒ 4k = 20 ⇒ k = 5,.
∴ The only value of k is 5,.