Math, asked by ajay8959, 5 months ago

For what values of k, the roots of the quadratic equation (k + 4)x2 + (K + 1)x + 1 = 0
are equal?​

Answers

Answered by vipashyana1
1

Answer:

k=5

Step-by-step explanation:

(k+4)x²+(k+1)x+1=0

a=k+4, b=k+1, c=1

Discriminant=0

b²-4ac=0

(k+1)²-4(k+4)(1)=0

k²+2k+1-4k-16=0

k²+2k-4k+1-16=0

k²-2k-15=0

k²-5k+3k-15=0

(k²-5k)+(3k-15)=0

k(k-5)+3(k-5)=0

(k-5)(k+3)=0

k=5 and k=(-3)

k=5

Therefore, the value of k is 5

Answered by MrHyper
10

\huge\mathcal\colorbox{blue}{{\color{white}{AnSwEr~↓~↓~}}}

 \bf \color{navy} Given \: that \: the \: quadratic \: equation \\  \bf \color{navy} has \: equal \: roots \\  \bf \therefore D , \:  \:  {b}^{2}  - 4ac = 0 \\  \bf here \: a = (k + 4) \: , \:  \: b = (k + 1) \: , \:  \: c = 1 \\  \bf  \implies (k + 1)^{2}  - 4(k + 4)(1) = 0 \\  \bf  ({k}^{2}  + 2k + 1) - 4k - 16 = 0 \\  \bf   {k}^{2}  + 2k + 1 - 4k - 16 = 0 \\  \bf  {k }^{2}  - 2k - 15 = 0 \\ \bf k^{2} - 5k + 3k - 15 = 0 \\ \bf [k(k - 5)~]+[3(k - 5)~] = 0 \\ \bf (k + 3)(k - 5) = 0 \\ \bf k + 3 = 0~~~or~~~k - 5 = 0 \\ \bf k = -3~~~or~~~k = 5

\huge\color{blue}{\textbf{\textsf{Hope~it~helps..!!}}}

Similar questions