Math, asked by Snehankur, 1 year ago

for what values of m the equations 3x^2+4mx+2=0 and 2x^2+3x-2=0 will have common root

Answers

Answered by mysticd
64

Answer:

 value \:of \:m = \frac{7}{4}\:Or \:m =\frac{-11}{8}

Step-by-step explanation:

 Given \: 3x^{2}+4mx+2=0\\and\:2x^{2}+3x-2=0\:have \\common \:root

 i) Find \: roots \: of \:2x^{2}+3x-2=0

/* Splitting the middle term,we get

\implies 2x^{2}+4x-1x-2=0

\implies 2x(x+2)-1(x+2)=0

\implies (x+2)(2x-1)=0

\implies x+2=0\:Or\:2x-1=0

\implies x=-2\:Or\:2x=1

\implies x=-2\:Or\:x=\frac{1}{2}

Now,\\substitute\:x \: values\\in \:3x^{2}+4mx+2=0,we\:get

Case\:1\\if\:x=-2,\\\implies 3\times \big(-2)^{2}+4m(-2)+2=0

\implies 12-8x+2=0

\implies 14-8x=0

\implies -8x=-14

\implies x = \frac{-14}{-8}

\implies x = \frac{7}{4}

Case \:2\\If\:x=\frac{1}{2}

\implies 3\times \big(\frac{1}{2}\big)^{2}+4m\times \big(\frac{1}{2}\big)+2=0

\implies \frac{3}{4}+2m+2=0

\implies \frac{3+8m+8}{4}=0

\implies 11+8m=0

\implies 8m = -11

\implies m = \frac{-11}{8}

\implies m = \frac{-11}{8}

Therefore,.

 value \:of \:m = \frac{7}{4}\:Or \:m =\frac{-11}{8}

•••♪

Answered by sakshisharma30966
13

Step-by-step explanation:

Hope it is helpful ❤️❤️

Attachments:
Similar questions