Math, asked by jessy1148, 1 month ago

For what values of'p' is the points (1,p) ,( 2p,2) , ( 3,3) are collinear

No spam please​

Answers

Answered by AestheticSky
15

 \bigstar \large \underbrace \orange{ \pmb{ \frak{ According\:To\:Question }}}  :  -

  • \sf x_{1} = 1

  • \sf y_{1} = p

  • \sf x_{2} = 2p

  • \sf y_{2} = 2

  • \sf x_{3} = 3

  • \sf y_{3} = 3

All the three points are colinear.

\bigstar \large \underbrace \orange{ \pmb{ \frak{Required\: Formula }}}  :  -

 \\  \leadsto\underline{ \boxed {\pink{{ \sf{0 = \bigg[  x_{1}( y_{2} - y_{3}) + x_{2}(y_{3} -y_{1} ) + x_{3}(y_{1} - x_{3})\bigg]   }}}}} \bigstar \\

 \dag \frak{substitute \: the \: given \: values \: in \: the \: formula :  - }

 \\  :   \implies \sf{0 = \bigg[  x_{1}( y_{2} - y_{3}) + x_{2}(y_{3} -y_{1} ) + x_{3}(y_{1} - x_{3})\bigg]   }  \\

  \\  :  \implies \sf0 = \bigg[  1( 2 - 3) + 2p(3 -p) + 3(p - 3)\bigg] \\

  \\  :  \implies \sf0 = \bigg[    - 1 + 6p - 2 {p}^{2} + 3p - 9\bigg] \\

  \\  :  \implies \sf0 = \bigg[    - 10 + 9p - 2 {p}^{2}  \bigg] \\

 \\ :   \implies \boxed{ \sf 2 {p}^{2}   - 9p + 10 = 0} \bigstar \\

Now, let's solve this quadratic equation through which we will get 2 values of p and both will be acceptable.

 \\  \rightarrow \sf \ 2 {p}^{2}  - 9 + 10 = 0 \\

 \\  \rightarrow \sf 2 {p}^{2}  - (4 + 5)p + 10 = 0 \\

 \\  \rightarrow \sf 2 {p}^{2}  - 4p - 5p + 10 = 0 \\

 \\  \rightarrow \sf 2p(p - 2) - 5(p - 2) = 0 \\

 \\  \rightarrow \sf (2p - 5)(p - 2) = 0 \\

 \\  \rightarrow \underline{ \boxed{ \pink{{ \sf p = 2 , \dfrac{5}{2} }}}} \bigstar \\

  \therefore  \: \underline{ \frak{2 \: and \:  \dfrac{5}{2} \:  are \: required \: values \: of \: p \: }}

______________________

Hope its helpful!

Similar questions