Math, asked by jagan59, 2 months ago

for which acute angle A cosA/1-sinA+cosA/1+sinA=4true​

Answers

Answered by divyajadhav66
10

Answer:

sec \: a \:  = 2

consider \: l.h.s. \frac{cos \: a}{1 - sin \: a}  +  \frac{cos \: a}{1 +  \cos a }

Taking cos A as common outside , we get

 \cos \: a \: ( \frac{1}{1 -  \sin  \: a   }  +  \frac{ 1}{1 +  \sin \: a} )

 =  \cos \: a \: ( \frac{2}{1 -  {sin}^{2} \:  a } )

 =  \: cos \: a \: ( \frac{2}{ {cos \: }^{2} } )

 =  \frac{2}{cos \: a}  = 2 \: sec \: a

R.H.S =4

2sec \: a \:  = 4

Then ,

 \boxed{ \to \: sec \: a \:  =  \: 2}

Hope it helps you

\huge{\boxed{\boxed{\overbrace{\overline{\overline{\over{\underbrace{{\fcolorbox{blue}{green}{RIYA HERE }}}}}}}}}}

Answered by sister785
0

Answer:

Answer:

sec \: a \: = 2seca=2

consider \: l.h.s. \frac{cos \: a}{1 - sin \: a} + \frac{cos \: a}{1 + \cos a }considerl.h.s.

1−sina

cosa

+

1+cosa

cosa

Taking cos A as common outside , we get

\cos \: a \: ( \frac{1}{1 - \sin \: a } + \frac{ 1}{1 + \sin \: a} )cosa(

1−sina

1

+

1+sina

1

)

= \cos \: a \: ( \frac{2}{1 - {sin}^{2} \: a } )=cosa(

1−sin

2

a

2

)

= \: cos \: a \: ( \frac{2}{ {cos \: }^{2} } )=cosa(

cos

2

2

)

= \frac{2}{cos \: a} = 2 \: sec \: a=

cosa

2

=2seca

R.H.S =4

2sec \: a \: = 42seca=4

Then ,

\boxed{ \to \: sec \: a \: = \: 2}

→seca=2

Similar questions