Math, asked by sudhakumbar9, 5 hours ago

for which pair of integer a b does a+b lie between a and b​

Answers

Answered by sumilacseb2020
0

Answer:

we do not know whether

b

a

<

a+b

a+2b

or

b

a

>

a+b

a+2b

Therefore, to compare these two numbers, let us compute

b

a

a+b

a+2b

We have,

b

a

a+b

a+2b

=

b(a+b)

a(a+b)−b(a+2b)

b(a+b)

a

2

+ab−ab−2b

2

=

b(a+b)

a

2

−2b

2

b

a

a+b

a+2b

>0

b(a+b)

a

2

−2b

2

>0

⇒a

2

−2b

2

>0

⇒a

2

>2b

2

⇒a>

2

b

and,

b

a

a+b

a+2b

<0

b(a+b)

a

2

−2b

2

<0

⇒a

2

−2b

2

<0

⇒a

2

<2b

2

⇒a<

2

b

Thus,

b

a

>

a+b

a+2b

, if a>

2

b and

b

a

<

a+b

a+2b

if a<

2

b.

So, we have the following cases:

Case I when a>

2

b

In this case, we have

b

a

>

a+b

a+2b

i.e.,

a+b

a+2b

<

b

a

We have to prove that

a+b

a+2b

<

2

<

b

a

We have,

a>

2b

⇒a

2

>2b

2

⇒a

2

+a

2

>a

2

+2b

2

[adding a

2

both sides]

⇒2a

2

+2b

2

>(a

2

+2b

2

)+2b

2

[adding 2b

2

on both sides]

⇒2(a

2

+2ab+b

2

)>a

2

+4ab+4b

2

[adding 4ab both sides]

⇒2(a+b)

2

>(a+2b)

2

2

(a+b)>a+2b

2

>

a+b

a+2b

Again,

a>

2

b⇒

b

a

>

2

From (i) and (ii), we get

a+b

a+2b

<

2

<

b

a

Case II when a<

2

b

In this case, we have

b

a

<

a+b

a+2b

We have to show that

b

a

<

2

<

a+b

a+2b

We have,

a<

2

b

⇒a

2

<2b

2

⇒a

2

+a

2

<a

2

+2b

2

[adding a

2

on both sides]

⇒2a

2

+2b

2

<a

2

+4b

2

[adding 2b

2

on both sides]

⇒2a

2

+4ab+2b

2

<a

2

+4ab+4b

2

⇒2(a+b)

2

<(a+2b)

2

2

<

a+b

a+2b

⇒a<

2

b⇒

b

a

<

2

From (iii) and (iv), we get

b

a

<

2

<

a+b

a+2b

Hence

2

lies between

b

a

and

a+b

a+2b

Similar questions