For which value of acute angle is cos θ / (1 − sin θ) + cos θ / (1 + sin θ) = 4 ture?
For which value of 0° < θ < 90°, above equation is not defined?
Answers
Answer:
Step-by-step explanation:
Cosθ/(1 - sinθ) + cosθ/(1 + sinθ) = 4 (Given)
Simplifying,
= Cosθ(1 + sinθ) + cosθ(1 - sinθ) /(1 - sinθ)(1 + sinθ) = 4
= Cosθ + cosθ × sinθ + cosθ - cosθ.sinθ} / (1 - sin²θ) = 4
Since, sin²x + cos²x = 1 therefore, (1 - sin²θ) = cos²θ
= 2cosθ/cos²θ = 4
= 2/cosθ = 4
= cosθ = 1/2
= cos 60°
Thus, when 0 < θ < 90° , then θ = 60°
If the given equation is not defined, ie. (1 - sinθ) = 0
in 0 < θ < 90° , sinθ = 1 at 90°
Then the equation is undefined at θ = 90°.
Answer:
Step-by-step explanation:
Step-by-step explanation:
Cosθ/(1 - sinθ) + cosθ/(1 + sinθ) = 4 (Given)
Simplifying,
= Cosθ(1 + sinθ) + cosθ(1 - sinθ) /(1 - sinθ)(1 + sinθ) = 4
= Cosθ + cosθ × sinθ + cosθ - cosθ.sinθ} / (1 - sin²θ) = 4
Since, sin²x + cos²x = 1 therefore, (1 - sin²θ) = cos²θ
= 2cosθ/cos²θ = 4
= 2/cosθ = 4
= cosθ = 1/2
= cos 60°
Thus, when 0 < θ < 90° , then θ = 60°
If the given equation is not defined, ie. (1 - sinθ) = 0
in 0 < θ < 90° , sinθ = 1 at 90°
Then the equation is undefined at θ = 90°.