For which value of k, the equation
x^2-2xy+5y^2+kx-5y+16=0 will represent
pair of
of straight lines.
Answers
We're given the equation of a pair of straight lines,
Equating discriminant to zero,
Again equating discriminant of the polynomial in the LHS to zero,
Answer:
We're given the equation of a pair of straight lines,
\longrightarrow x^2-2xy+5y^2+kx-5y+16=0⟶x
2
−2xy+5y
2
+kx−5y+16=0
\longrightarrow5y^2-(2x+5)y+(x^2+kx+16)=0⟶5y
2
−(2x+5)y+(x
2
+kx+16)=0
Equating discriminant to zero,
\longrightarrow [-(2x+5)]^2-20(x^2+kx+16)=0⟶[−(2x+5)]
2
−20(x
2
+kx+16)=0
\longrightarrow 4x^2+20x+25-20x^2-20kx-320= 0⟶4x
2
+20x+25−20x
2
−20kx−320=0
\longrightarrow -16x^2+20(1-k)x-295=0⟶−16x
2
+20(1−k)x−295=0
\longrightarrow 16x^2+20(k-1)x+295=0⟶16x
2
+20(k−1)x+295=0
Again equating discriminant of the polynomial in the LHS to zero,
\longrightarrow [20(k-1)]^2-4\cdot16\cdot295=0⟶[20(k−1)]
2
−4⋅16⋅295=0
\longrightarrow 400k^2-800k+400-18880=0⟶400k
2
−800k+400−18880=0
\longrightarrow 5k^2-10k-231=0⟶5k
2
−10k−231=0
\longrightarrow k=\dfrac{10\pm\sqrt{(-10)^2-4\cdot5\cdot-231}}{2\cdot5}⟶k=
2⋅5
10±
(−10)
2
−4⋅5⋅−231
\longrightarrow k=\dfrac{10\pm\sqrt{100+4620}}{10}⟶k=
10
10±
100+4620
\longrightarrow\underline{\underline{k=1\pm\sqrt{47.2}}}⟶
k=1±
47.2