Math, asked by aryanpatel4918, 9 months ago

For which value of k will the following pair of linear equations have no solution? 3x + y = 1, (2k – 1)x + (k – 1)y = 2k + 1

Answers

Answered by ajeet7890singh
10

Step-by-step explanation:

3x + y =1

(2k-1)x+(k-1)y=2k+1

=> 3x+y-1=0

(2k-1)x+(k-1)y-2k-1 =0

We know,

a1/a2 = b1/b2 not equal to c1/c2 has no solution

Now,we have,

a1=3 , b1=1

a2=2k-1 , b2 = k-1

3/2k-1 = 1/k-1

3(k-1) = 2k -1

3k-3 = 2k -1

3k -2k = -1 +3

k = 2

I hope it will help you

Answered by Priyanshulohani
3

\underline\mathfrak{Given:-}

\: \: \: \: \: \: \: {({2k} \: - \: {1})} \: x \: + \: {({k} \: - \: {2})} \: y \: \: = \: \: {5}

\: \: \: \: \: \: \: {({k} \: + \: {2})} \: x \: + \: y \: \: = \: \: {3}

\underline\mathfrak{To \: \: Find:-}

\: \: \: \: \: The \: \: value \: \: k \: ?

\underline\mathfrak{Solutions:-}

\: \: \: \: \: \fbox{\dfrac{a_1}{a_2} \: \: = \: \:  \dfrac{b_1}{b_2} \: \: \neq \: \: \dfrac{c_1}{c_2}}

\: \: \: \: \: \dfrac{{2k} \: - {1}}{{k} \: + \: {2}} \: \: = \: \:  \dfrac{{k} \: - \: {2}}{{1}} \: \: \neq \: \: \dfrac{5}{3}

\: \: \: \: \: \leadsto \dfrac{{2k} \: - {1}}{{k} \: + \: {2}} \: \: = \: \:  \dfrac{{k} \: - \: {2}}{{1}} \: \: \: \: \: .....{(1)}.

\: \: \: \: \: \leadsto \dfrac{{k} \: - \: {2}}{{1}} \: \: \neq \: \: \dfrac{5}{3} \: \: \: \: \: .....{(2)}.

\: \: \: \: \: Now, \: \: cross \: \: multiple \: \: in \: \: Eq. \: \: {(1)}.

\: \: \: \: \: \leadsto \dfrac{{2k} \: - {1}}{{k} \: + \: {2}} \: \: = \: \:  \dfrac{{k} \: - \: {2}}{{1}}

\: \: \: \: \: \leadsto {{2k} \: - {1}} \: \: = \: \: {({k} \: - \: {2})} \: \times \: {{({k} \: + \: {2})}}

\: \: \: \: \: \leadsto {{2k} \: - {1}} \: \: = \: \: {{k}^{2} \: - \: {2}^{2}} \: \: \: \: \: \: \: \: \: {[(a \: + \: b) \: (a \: - \: b) \: \: = \: \: ({a}^{2} \: - \: {b}^{2}]}

\: \: \: \: \: \leadsto {{2k} \: - {1}} \: \: = \: \: {{k}^{2} \: - \: {4}}

\: \: \: \: \: \leadsto {0} \: \: = \: \: {k}^{2} \: - \: {2k} \: - \: {4} \: + \: {1}

\: \: \: \: \: \leadsto {0} \: \: = \: \: {k}^{2} \: - \: {2k} \: - \: {3}

\: \: \: \: \: \leadsto {k}^{2} \: - \: {2k} \: - \: {3}

\: \: \: \: \: \leadsto {k} \: {({k} \: - \: {3})} \: + \: {1} \: {({k} \: - \: {3})}

\: \: \: \: \: \leadsto {({k} \: + \: {1})} \: \: \: {({k} \: - \: {3})}

\: \: \: \: \: \leadsto {k} \: \: = \: \: {-1} \: \: \: Or \: \: \: {k} \: \: = \: \: {3}

\: \: \: \: \: Hence, \: \: the \: \: the \: \: value \: \: of \: \: k \: \: is \: \:{-1} \: \: and \: \: {3}.

\: \: \: \: \:  \dfrac{{k} \: - \: {2}}{{1}} \: \: \neq \: \: \dfrac{5}{3} \: \: \: \: \: .....{(2)}.

__________________________________

Similar questions