Math, asked by deep2004sargun, 10 months ago

For which values of a and b, the zeroes of q(x) = x 3 – 2x 2 – x + a are also the zeroes of the polynomial p(x) = x 5 – 2x 4 – 10x 3 + 20x 2 + 9x + b?

Answers

Answered by pallu723
0

For which values of a and b, the zeroes of q(x) = x 3 – 2x 2 – x + a are also the zeroes of the polynomial p(x) = x 5 – 2x 4 – 10x 3 + 20x 2 + 9x + b?

⏭️⏭️⏭️⏭️⏭️⏭️⏭️⏭️⏭️⏭️⏭️⏭️⏭️

Attachments:
Answered by knjroopa
0

Step-by-step explanation:

Given For which values of a and b, the zeroes of q(x) = x 3 – 2x 2 – x + a are also the zeroes of the polynomial p(x) = x 5 – 2x 4 – 10x 3 + 20x 2 + 9x + b?

  • Now by division algorithm we get
  •    So x^3 – 2x^2 – x + a ) x^5 – 2x^4 – 10 x^3 + 20x^2 + 9x + b (x^2 – 9
  •                                    So    x^5 – 2x^4 – x^3 + ax^2
  •                                                    So      - 9x^3 + (20 – a) x^2 + 9x + b
  •                                                      So    - 9x^3 + 18 x^2 + 9x – 9a
  •                                                                           (20 – a – 18) x^2 + (b + 9a)
  •                                 So (2 – a) x^2 + (b + 9a)
  • So if (x^2 – 9) is a factor of x^5 – 2x^4 – 10 x^3 + 20 x^2 + 9x + b then remainder should be zero.
  • So we can take 2 – a = 0
  •                 Or a = 2
  • Also b + 9a = 0
  •       Or b + 9(2) = 0
  •      Or b = - 18
  • So q(x) = x^3 – 2x^2 – x + 2
  • So p(x) = x^5 – 2x^4 – 10x^3 + 20x^2 + 9x – 18
  •          = (x^3 – 2x^2 – x + 2) (x^2 – 9) + 0
  •          = (x^3 – 2x^2 – x + 2) (x + 3) (x – 3)
  • So the other zeroes of p(x) are – 3 and 3

Reference link will be

https://brainly.in/question/16765837

Similar questions