Math, asked by zidan43, 10 months ago

for which values of r nCr = nPr​

Answers

Answered by sanjeevk28012
5

Given :

n C r = n P r​

To Find :

The value of r

Solution :

∵  n C r = n P r​

So,   \dfrac{\angle n}{\angle (n-r)} =  \dfrac{\angle n}{\angle r\angle (n-r)}

Or,  \angle r  = 1

So,  ! r = 0 , 1

Now,

Let n = 5 , r = 1

 \dfrac{\angle 5}{\angle (5-1)} =  \dfrac{\angle 5}{\angle 1\angle (5-1)}

               = \dfrac{\angle 5}{\angle 1\angle (4)}

               = \dfrac{5!4}{!4}

               = 5

Again

Let n = 5 , r = 0

 \dfrac{\angle 5}{\angle (5-0)} =  \dfrac{\angle 5}{\angle 0\angle (5-0)}

                = \dfrac{!5}{!0}

                = 1

   So, here Two case raises that the value of r = 1 , 0  , but the value of r should be 1 for the condition to be true

Hence,  The value of r should be 1 for the condition to be true . Answer

Similar questions