Math, asked by zulfiqarahmad77, 1 month ago

For x=4, the function f(x) = x^2 +bx+ c has the minimum value of -9 . Find c.

Answers

Answered by TrustedAnswerer19
10

Answer:

 \bf \: f(x) =  {x}^{2}  + bx + c \\ \sf \: for \: x = 4 \:  \: it \: has \: minmum \: value  \\  \\  \therefore \:  \sf \:  x =  -  \frac{b}{2a}  \\  \implies \: 4 =  -  \frac{b}{2 \times 1}  \\ \bf  \therefore \: b  =  - 8 \\  \\  \sf \: here \: coefficient \: of \:  {x}^{2}  \: is \: a = 1 > 0 \\ so \\  \\  \sf \: \:  \:  \:  \:  \:  \:  c -  \frac{ {b}^{2} }{4a}  =  - 9 \\  =  >  \sf \: c =  - 9 +  \frac{ {b}^{2} }{4a}  \\  \sf =  >  \: c =  - 9 +  \frac{ {( - 8)}^{2} }{4 \times 1}  \\  \sf   =  > c =  - 9 +  \frac{64}{4}  \\  \sf  =  > c =  \frac{ - 36 + 64}{4}  \\  \bf \therefore \:c = 7

So c = 7

Note:

 \bf \: \:  \: f(x) = a {x}^{2}  + bx + c \\

For maximum or minimum value of this polynomial

 \bf \: x =  -  \frac{b}{2a}

if a>0 it has minimum value

if a<0 it has maximum value

And the value for both conditions is

 \sf \: c -  \frac{ {b}^{2} }{4a}

Answered by santhipriya01
3

Answer:

f(x)=x2+bx+cforx=4ithasminmumvalue∴x=−2ab⟹4=−2×1b∴b=−8herecoefficientofx2isa=1&gt;0soc−4ab2=−9=&gt;c=−9+4ab2=&gt;c=−9+4×1(−8)2=&gt;c=−9+464=&gt;c=4−36+64∴c=7</p><p>So c = 7</p><p>Note:</p><p>\begin{gathered} \bf \: \: \: f(x) = a {x}^{2} + bx + c \\ \end{gathered}f(x)=ax2+bx+c</p><p>For maximum or minimum value of this polynomial</p><p>\bf \: x = - \frac{b}{2a}x=−2ab</p><p>if a&gt;0 it has minimum value</p><p>if a&lt;0 it has maximum value</p><p>And the value for both conditions is</p><p>\sf \: c - \frac{ {b}^{2} }{4a}c−4ab2</p><p>

Similar questions