Math, asked by Ally1234, 1 month ago

For x= -9/11 and y= 5/7, verify that (-x)+(-y) = -(x+y)

Chapter:Rational numbers. class 8

Kindly answer fast , correctly and properly with workings​

Answers

Answered by unknown3839
10

\small\bf\pink{Heya!\:mate\:,Here\:is\:ur\:solution}

Here,

it is given that :

\sf{➟x =  \frac{ - 9}{11} }

\sf{➟y =  \frac{5}{7} }

To verify :

  • (-x)+(-y) = -(x+y) or not

❥Let's do it !

Let (-x)+(-y) be LHS

and -(x+y) be RHS

let's solve the LHS first :

LHS = (-x)+(-y)

\sf{LHS= - ( \frac{ - 9}{11} ) + (  \frac{ - 5}{7})}

\sf{   = \frac{9}{11}  + ( \frac{ - 5}{7}) } \\ \sf{ =  \frac{9}{11} -  \frac{5}{7}}   \\ \sf{ =  \frac{63 - 55}{77} } \\ \sf{ =  \frac{8}{77} }

Therefore,

\bf{LHS= \frac{8}{77} }

Now lets find the RHS

RHS = -(x+y)

\sf{RHS= - ( -  \frac{9}{11}  +  \frac{5}{7})}

\sf{= - ( \frac{ - 63 + 55}{77})}

\sf{= - ( \frac{ - 8}{77} )} \\ \sf{= -  -  \frac{8}{77} } \\ \sf{= \frac{8}{77} }

Therefore,

\bf{RHS =  \frac{8}{77}}

So here we can see that both LHS and RHS is 8/77

Hence, verified.

\small\bf\blue{Hope\:it\:helps\:uh\::)}

Similar questions