for x, y belongs to R if (x-2) +(y-1) /=2+x/ then y equals
Answers
Answered by
0
Answer:
x∫
1
x
y(t)dt=x∫
1
x
ty(t)dt+∫
1
x
ty(t)dt
differentiate w.r. to x.
∫
1
x
y(t)dt+x[y(x)−y(1)]=∫
1
x
ty(t)dt+x[xy(x)−y(1)]+xy(x)−y(1)
∫
1
x
y(t)dt=∫
1
x
ty(t)dt+x
2
y(x)−y(1)
diff. again w.r to x
y(x)−y(1)=xy(x)−y(1)+2xy(x)+x
2
y
′
(x)
(1−3x)y(x)=x
2
y
′
(x)
y(x)
y
′
(x)
=
x
2
1−3x
y
1
dx
dy
=
x
2
1−3x
⇒ln y=−
xx1
−3ln x
ln(yx
3
)=−
x
1
+lnc
yx
3
=ce
−
x
1
y=c
x
3
e
−
x
1
or y=
x
3
ce
−
x
1
Similar questions
Math,
2 months ago
Computer Science,
2 months ago
India Languages,
5 months ago
Hindi,
11 months ago
English,
11 months ago