Physics, asked by StrongGirl, 9 months ago

Force experienced by the charged particle in units of 10^-9 N will be ?

Attachments:

Answers

Answered by Anonymous
23

Answer:

 \boxed{\mathfrak{(2) \ - 30\hat{i} + 21 \hat{j}  - 2 \hat{k}}}

Given:

 \sf Charge  \: (q)= 1 \mu C = 1  \times  {10}^{ - 6}  \: C

 \sf  Velocity ( \overrightarrow{v})  = 4 \hat{i} + 6 \hat{j} + 3 \hat{k}

 \sf  Uniform  \: magnetic  \: field \:  ( \overrightarrow{B})  = 3\hat{i} + 4 \hat{j}  - 3 \hat{k} \times  {10}^{ - 3}

To Find:

Force ( \sf \overrightarrow{F} ) experience by charged particle in units of  \sf 10^{-9} N

Explanation:

Force exerted by a magnetic field is called magnetic force. It is given by:

 \boxed{ \bold{\overrightarrow{F} = q(\overrightarrow{v} \times \overrightarrow{B})}}

By substituting value of q,  \sf \overrightarrow{v} &  \sf \overrightarrow{B} in the equation we get:

 \sf \implies \overrightarrow{F} = 1 \times  {10}^{ - 6} ((4 \hat{i} + 6 \hat{j} + 3 \hat{k}) \times (3\hat{i} + 4 \hat{j}  - 3 \hat{k} \times  {10}^{ - 3} )) \\  \\  \sf \implies \overrightarrow{F} =  {10}^{ - 9} ((4 \hat{i} + 6 \hat{j} + 3 \hat{k}) \times (3\hat{i} + 4 \hat{j}  - 3 \hat{k})) \\  \\   \sf \implies \overrightarrow{F} =   (( 6 \times ( - 3) - 3 \times 4)  \hat{i}  -  (4 \times ( - 3) - 3 \times 3) \hat{j} + (4 \times 4 - 6 \times 3)\hat{k})  \times  {10}^{ - 9} \\  \\   \sf \implies \overrightarrow{F} = (( - 18 - 12)\hat{i}  -  ( - 12 - 9) \hat{j} + (16 - 18) \hat{k}) \times {10}^{ - 9}   \\  \\  \sf \implies \overrightarrow{F} = (- 30 \hat{i}  - ( - 21) \hat{j} + ( - 2) \hat{k}) \times  {10}^{ - 9}  \\  \\  \sf \implies \overrightarrow{F} =  (- 30\hat{i} + 21 \hat{j}  - 2 \hat{k}) \times  {10}^{ - 9}  \: N

 \therefore

Force ( \sf \overrightarrow{F} ) experience by charged particle in units of  \sf 10^{-9} N =  \sf - 30\hat{i} + 21 \hat{j}  - 2 \hat{k}

Answered by Anonymous
2

Answer:-

 \bf {\overrightarrow{ F} = -30\hat{ i}+21\hat {j}-2\hat{K} \times  {10}^{ - 9} N}

Refer the attachment!!!

Attachments:
Similar questions