Physics, asked by AnswerBank16, 1 month ago

Force F and density d are related as F = ∝/β root d then find the dimensions of ∝ and β.

Answers

Answered by Anonymous
15

Answer:

Given;

\longrightarrow\:\:\tt F = \dfrac{\alpha}{\beta + \sqrt{D}} \\

\dag\: \underline{\underline{\textsf{Dimensions of Force :}}} \\

\longrightarrow\:\:\sf Force = mass \times Acceleration \\

\longrightarrow\:\:\sf Force = [M][LT^{-2}] \\

\longrightarrow\:\:\sf Force = [MLT^{-2}] \\

\dag\: \underline{\underline{\textsf{Dimensions of Density :}}} \\

\longrightarrow\:\:\sf Density = \dfrac{Mass}{Volume} \\

\longrightarrow\:\:\sf Density = \dfrac{[M]}{[L^3]} \\

\longrightarrow\:\:\sf Density = [M][L^{ - 3}]\\

\longrightarrow\:\:\sf Density = [ML^{ - 3}]\\

Now,

\longrightarrow\:\:\tt [F] =[ \alpha ]\\

\longrightarrow\:\: \underline{ \boxed{\tt [ \alpha ]= [MLT^{-2}]}} \\

Also,

 \longrightarrow\:\:\tt  [\beta]= [\sqrt{D}]\\

\longrightarrow\:\:\tt  [\beta]= [D]^{  \frac{1}{2} } \\

\longrightarrow\:\:\tt  [\beta]= [ML^{ - 3}]^{  \frac{1}{2} } \\

\longrightarrow\:\: \underline{ \boxed{\tt  [\beta]= [M^{ \frac{1}{2} } L^{  \frac{ - 3}{2} }] }}\\

Similar questions