Physics, asked by aashigirje, 7 months ago

force of 5 n produces acceleration of 8m/s^2 on mass m1 and acceleration of 24 on mass 2 what acceleration would the same force provide if both masses are tied together

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
5

\displaystyle\large\underline{\sf\red{Given}}

✭ A force of 5N acts produces an acceleration of 8 m/s² on a body of mass m1

✭ The same force produces an acceleration of 24 m/s² of a body of mass m2

\displaystyle\large\underline{\sf\blue{To \ Find}}

◈ The acceleration that will be produced when thetwo bodies are tired?

\displaystyle\large\underline{\sf\gray{Solution}}

So here we are gonna use the Newton's Second Law of Motion,

\displaystyle\underline{\boxed{\sf F = ma}}

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

So we shall first find the mass of body 1

\displaystyle\sf F = ma

\displaystyle\sf 5 = m \times 8

\displaystyle\sf \purple{m_1 = \dfrac{5}{8}}

Similarly the mass of body two will be,

\displaystyle\sf F = ma

\displaystyle\sf 5 = m \times 24

\displaystyle\sf \green{m_2 = \dfrac{5}{24}}

Now the Total mass will be,

›› \displaystyle\sf Total \ mass = m_1+m_2

›› \displaystyle\sf Total \ mass = \dfrac{5}{8} + \dfrac{5}{24}

›› \displaystyle\sf Total \ mass = \dfrac{15}{24}+\dfrac{5}{24}

›› \displaystyle\sf Total \ mass = \dfrac{15+5}{24}

›› \displaystyle\sf Total \ mass = \dfrac{20}{24}

›› \displaystyle\sf \orange{Total \ mass = \dfrac{5}{6}}

So then the acceleration produced will be,

»» \displaystyle\sf F = ma

»» \displaystyle\sf 5 = \dfrac{5}{6} \times a

»» \displaystyle\sf 5\times \dfrac{6}{5} = a

»» \displaystyle\sf \pink{Acceleration = 6 \ m/s^2}

\displaystyle\therefore\:\underline{\sf When \ they \ are \ tried \ together \ acc^n \ is \ 6m/s}

━━━━━━━━━━━━━━━━━━

Answered by Anonymous
7

Answer:

This is a beautiful problem to test whether a student actually understands Newton's 2nd law of motion.

  • Force = mass × Acceleration

That simple law is all you need to solve this problem, but you need to

use it a few times.

m₁ alone:

= >  \sf Force = mass  \times  Acceleration \\

=> \sf 5 N =  m_1\times 8 \:  m/s^2 \\

=>\sf m_{1}=  \dfrac{5 \:  N }{8  \: m/s^{2} } \\

=> \underline{ \boxed{\sf m_{1}=  0.625 \:kilograms }} \\

____________________....

m₂ alone:

                    

= >  \sf Force = mass  \times  Acceleration \\

=> \sf 5 N =  m_2\times 24 \:  m/s^2 \\

=>\sf m_{2}=  \dfrac{5 \:  N }{24  \: m/s^{2} } \\

=> \underline{ \boxed{\sf m_{2}=  0.208 \:kilograms }} \\

_________________....

Now, we will find the total mass

=> \sf Total  \: mass = m_1 + m_2 \\

=> \sf Total  \: mass =0.625+ 0.208\\

=> \underline{ \boxed{ \sf Total  \: mass = 0.833 \:kilograms }} \\

_______________....

m₁ and m₂ glued together:

=>  \sf Force = mass  \times  Acceleration \\

= >  \sf 5  N= 0.833 \: kg  \times  Acceleration \\

=>  \sf Acceleration  =  \frac{5N}{0.833 \: kg} \\

=> \underline{ \boxed{  \textsf{ \textbf{ Acceleration   =  6 \:  m/s$^2$}}}}\\

                 

Similar questions