Physics, asked by dhurikorivi, 10 months ago

Forces 2N and 1FN act at 45 degrees to give resultant root 10 then F=?? ​

Answers

Answered by BrainlyPopularman
55

ANSWER :

▪︎  { \bold{f  =  -   \sqrt{2} \:  \: and \:  \:  {f}  =  3 \sqrt{2}   }} \\

EXPLANATION :

GIVEN :

▪︎ Two forces are (2)N and (1F)N act at 45⁰ .

▪︎ Resultant of vectors are 10 N.

TO FIND :

Value of 'F'.

SOLUTION :

We know that when two forces a and b act at θ degree angle then resultant is –

  \\ \implies{  \boxed{ \bold{R =  \sqrt{ {a}^{2} +  {b}^{2} - 2ab \cos( \theta)   } }}} \\

▪︎ Now put the values –

  \\ \implies{ \bold{ \sqrt{10} =  \sqrt{ {(2)}^{2} +  {(1f)}^{2} - 2(2)(1f) \cos( {45}^{0} ) }}} \\

  \\ \implies{ \bold{ \sqrt{10}  =  \sqrt{4 +  {f}^{2} - 4f( \frac{1}{ \sqrt{2} })  }}} \\

  \\ \implies{ \bold{ \sqrt{10}  =  \sqrt{4 +  {f}^{2} - 2 \sqrt{2} f  }}} \\

Now square both side –

  \\ \implies{ \bold{10 =  4 +  {f}^{2} - 2 \sqrt{2} f  }} \\

  \\ \implies{ \bold{{f}^{2} - 2 \sqrt{2} f   - 6 = 0}} \\

  \\ \implies{ \bold{{f}^{2} - 3 \sqrt{2} f  +  \sqrt{2} f  - 6 = 0}} \\

  \\ \implies{ \bold{f({f} - 3 \sqrt{2} )  +  \sqrt{2}( f  - 3 \sqrt{2}  )= 0}} \\

  \\ \implies{ \bold{(f +  \sqrt{2}) ({f} - 3 \sqrt{2} )  = 0}} \\

  \\ \implies{ \bold{f  =  -   \sqrt{2} \:  \: , \:  \:  {f}  =  3 \sqrt{2}   }} \\

Answered by AnIntrovert
41

hope it helps..... .....

Attachments:
Similar questions