forest fire causes imbalance in nature
Answers
Answered by
1
Answer:
NO
Explanation:
THIS IS NOT CAUSED BY INBALANCE IN NATURE
Answered by
2
ECOSYSTEM EFFECTS OF FIRE
Forest fires have many implications for biological diversity. At the global scale, they are a significant source of emitted carbon, contributing to global warming which could lead to biodiversity changes. At the regional and local level, they lead to change in biomass stocks, alter the hydrological cycle with subsequent effects for marine systems such as coral reefs, and impact plant and animal species' functioning. Smoke from fires can significantly reduce photosynthetic activity (Davies and Unam, 1999) and can be detrimental to health of humans and animals.
One of the most important ecological effects of burning is the increased probability of further burning in subsequent years, as dead trees topple to the ground, opening up the forest to drying by sunlight, and building up the fuel load with an increase in fire-prone species, such as pyrophytic grasses. The consequence of repeated burns is detrimental because it is a key factor in the impoverishment of biodiversity in rain forest ecosystems. Fires can be followed by insect colonization and infestation which disturb the ecological balance.
The replacement of vast areas of forest with pyrophytic grasslands is one of the most negative ecological impacts of fires in tropical rain forests. These processes have already been observed in parts of Indonesia and Amazonia (Turvey, 1994; Cochrane et al., 1999; Nepstad, Moreira and Alencar, 1999). What was once a dense evergreen forest becomes an impoverished forest populated by a few fire-resistant tree species and a ground cover of weedy grasses (Cochrane et al., 1999). In North Queensland in Australia, it has been observed that where the aboriginal fire practices and fire regimes were controlled, rain forest vegetation started to replace the fire-prone tree-grass savannahs (Stocker, 1981).
EFFECTS OF FIRE ON FOREST FAUNA
In forests where fire is not a natural disturbance, it can have devastating impacts on forest vertebrates and invertebrates - not only killing them directly, but also leading to longer-term indirect effects such as stress and loss of habitat, territories, shelter and food. The loss of key organisms in forest ecosystems, such as invertebrates, pollinators and decomposers, can significantly slow the recovery rate of the forest (Boer, 1989).
Estimates from the 1998 fires in the Russian Federation suggest that mammals and fish were badly affected. Mortality of squirrels and weasels, estimated immediately after the fires, reached 70 to 80 percent; boar 15 to 25 percent; and rodents 90 percent (Shvidenko and Goldammer, 2001).
Loss of habitat, territories and shelter
The destruction of standing cavity trees as well as dead logs on the ground has negative effects on most small mammal species (e.g. tarsiers, bats and lemurs) and cavity-nesting birds (Kinnaird and O'Brien, 1998). Fires can cause the displacement of territorial birds and mammals, which may upset the local balance and ultimately result in the loss of wildlife, since displaced individuals have nowhere to go. The severe fires of 1998 in the Russian Federation led to increased water temperatures and high carbon dioxide levels in lakes and waterways, which adversely affected salmon spawning (Shvidenko and Goldammer, 2001). In areas where frequent burning occurs on a broad scale, preserving a range of microhabitats can make a substantial contribution to conserving biodiversity (Andrew, Rodgerson and York, 2000).
Loss of food
Loss of fruit-trees results in overall decline in bird and animal species that rely on fruits for food; this effect is particularly pronounced in tropical forests. A few months after the 1982-1983 fires in Kutai National Park, East Kalimantan, fruit-eating birds such as hornbills declined dramatically, and only insectivorous birds such as woodpeckers were common because of the abundance of wood-eating insects.
Burned forests become impoverished of small mammals, birds and reptiles, and carnivores tend to avoid burned over areas. The reduction in densities of small mammals such as rodents can adversely affect the food supply for small carnivores.
Fires also destroy leaf litter and its associated arthropod community, further reducing food availability for omnivores and carnivores (Kinnaird and O'Brien, 1998).
Hope it helps you
Plz plz mark as brain list answer
Forest fires have many implications for biological diversity. At the global scale, they are a significant source of emitted carbon, contributing to global warming which could lead to biodiversity changes. At the regional and local level, they lead to change in biomass stocks, alter the hydrological cycle with subsequent effects for marine systems such as coral reefs, and impact plant and animal species' functioning. Smoke from fires can significantly reduce photosynthetic activity (Davies and Unam, 1999) and can be detrimental to health of humans and animals.
One of the most important ecological effects of burning is the increased probability of further burning in subsequent years, as dead trees topple to the ground, opening up the forest to drying by sunlight, and building up the fuel load with an increase in fire-prone species, such as pyrophytic grasses. The consequence of repeated burns is detrimental because it is a key factor in the impoverishment of biodiversity in rain forest ecosystems. Fires can be followed by insect colonization and infestation which disturb the ecological balance.
The replacement of vast areas of forest with pyrophytic grasslands is one of the most negative ecological impacts of fires in tropical rain forests. These processes have already been observed in parts of Indonesia and Amazonia (Turvey, 1994; Cochrane et al., 1999; Nepstad, Moreira and Alencar, 1999). What was once a dense evergreen forest becomes an impoverished forest populated by a few fire-resistant tree species and a ground cover of weedy grasses (Cochrane et al., 1999). In North Queensland in Australia, it has been observed that where the aboriginal fire practices and fire regimes were controlled, rain forest vegetation started to replace the fire-prone tree-grass savannahs (Stocker, 1981).
EFFECTS OF FIRE ON FOREST FAUNA
In forests where fire is not a natural disturbance, it can have devastating impacts on forest vertebrates and invertebrates - not only killing them directly, but also leading to longer-term indirect effects such as stress and loss of habitat, territories, shelter and food. The loss of key organisms in forest ecosystems, such as invertebrates, pollinators and decomposers, can significantly slow the recovery rate of the forest (Boer, 1989).
Estimates from the 1998 fires in the Russian Federation suggest that mammals and fish were badly affected. Mortality of squirrels and weasels, estimated immediately after the fires, reached 70 to 80 percent; boar 15 to 25 percent; and rodents 90 percent (Shvidenko and Goldammer, 2001).
Loss of habitat, territories and shelter
The destruction of standing cavity trees as well as dead logs on the ground has negative effects on most small mammal species (e.g. tarsiers, bats and lemurs) and cavity-nesting birds (Kinnaird and O'Brien, 1998). Fires can cause the displacement of territorial birds and mammals, which may upset the local balance and ultimately result in the loss of wildlife, since displaced individuals have nowhere to go. The severe fires of 1998 in the Russian Federation led to increased water temperatures and high carbon dioxide levels in lakes and waterways, which adversely affected salmon spawning (Shvidenko and Goldammer, 2001). In areas where frequent burning occurs on a broad scale, preserving a range of microhabitats can make a substantial contribution to conserving biodiversity (Andrew, Rodgerson and York, 2000).
Loss of food
Loss of fruit-trees results in overall decline in bird and animal species that rely on fruits for food; this effect is particularly pronounced in tropical forests. A few months after the 1982-1983 fires in Kutai National Park, East Kalimantan, fruit-eating birds such as hornbills declined dramatically, and only insectivorous birds such as woodpeckers were common because of the abundance of wood-eating insects.
Burned forests become impoverished of small mammals, birds and reptiles, and carnivores tend to avoid burned over areas. The reduction in densities of small mammals such as rodents can adversely affect the food supply for small carnivores.
Fires also destroy leaf litter and its associated arthropod community, further reducing food availability for omnivores and carnivores (Kinnaird and O'Brien, 1998).
Hope it helps you
Plz plz mark as brain list answer
Attachments:
Similar questions
English,
3 months ago
Social Sciences,
3 months ago
Political Science,
3 months ago
Science,
7 months ago
Social Sciences,
11 months ago
Math,
11 months ago