Math, asked by mwitwakapotwe, 1 year ago

form a quadratic equation for which the sum of the roots is 5 and the sum of the squares is the root is 53

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{Sum of the roots is 5 and sum of the squares}

\textsf{of roots is 53}

\underline{\textbf{To find:}}

\textsf{The quadratic equation}

\underline{\textbf{Solution:}}

\mathsf{Let\;the\;given\;roots\;be\;\alpha\;\&\;\beta}

\textsf{As per given data,}

\mathsf{\alpha+\beta=5\;\&\;\alpha^2+\beta^2=53}

\implies\mathsf{(\alpha+\beta)^2-2\alpha\beta=53}\;\;\;\;\mathsf{(\because\;(a+b)^2=a^2+b^2+2ab)}

\implies\mathsf{(5)^2-2\alpha\beta=53}

\implies\mathsf{25-2\alpha\beta=53}

\implies\mathsf{-2\alpha\beta=53-25}

\implies\mathsf{-2\alpha\beta=28}

\implies\mathsf{\alpha\beta=-14}

\textsf{The required quadratic equation is}

\mathsf{x^2-(Sum\;of\;roots)x+Product\;of\;roots=0}

\mathsf{x^2-(5)x+(-14)=0}

\boxed{\mathsf{x^2-5x-14=0}}

Similar questions