Math, asked by riyakapoor1505, 4 months ago

form a quadratic equation whose roots are -4 and 5/3​

Answers

Answered by Anonymous
10

\large\underline{\underline{\frak{\maltese\:\: \red{Given : }}}}

1st Root (α) = -4

2nd Root (β) = \frac {5}{3}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\frak{\maltese\:\: \red{Knowledge \: Required\: :}}}}

» General form of Quadratic Equation = x ² - (Sum of its roots) + Product of its roots

» General form of Quadratic Equation = x² - (α + β)x + αβ

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\frak{\maltese\:\: \red{Solution \: : }}}}

\odot \: \alpha \: + \: \beta = - 4 \: + \: \frac{5}{3}

 \leadsto \: \alpha \: + \: \beta = \frac{-12 \: + \: 5}{3}

 \leadsto \: \boxed{\bold{\underline{\alpha \: + \: \beta = \frac{-7}{3}}}}

\\

\odot \: \alpha \: \times \:  \beta = -4 \: \times \: \frac {5}{3}

 \leadsto \:  \boxed{\bold{\underline{\alpha \beta = \frac{-20}{3}}}}

\\

Quadratic Equation = x² - (α + β)x + αβ

Quadratic Equation = x² - \bold{(\frac{-7}{3})}x - \bold{\frac{20}{3}}

Quadratic Equation = x² + \bold{\frac{7}{3}}x - \bold{\frac{20}{3}}

\\

\boxed{\bold{ \underline{\therefore \: Quadratic \:  Equation = x^2 \: + \: \frac{7}{3}x \: - \:\frac{20}{3}}}}

Similar questions