Math, asked by avahazarika238, 11 months ago

Form a quadratic equation whose sum and product are -3 and 2

Answers

Answered by ShírIey
56

AnswEr:

\bold{\underline{\sf{\red{\;\;Given:-\;\;}}}}

\dag Sum of Zeroes = -3

\dag Product of Zeroes = 2

We know that,

Sum of Zeroes = \sf\; (\alpha \; + \; \beta)

Product of Zeroes = \sf\; (\alpha \; \beta)

\rule{150}3

\bold{\underline{\sf{\red{\;\; Using\; Formula:-\;\;}}}}

Here,

  • \sf (\alpha + \beta)\;  = \; -3
  • \sf (\alpha\; \beta)\; = \; 2

\dag\large{\underline{\boxed{\sf{\pink{x^2 - (\alpha \; + \; \beta)x + (\alpha\; \beta)}}}}}

Now,

\longrightarrow\sf\; x^2 + 3x + 2

\large{\underline{\boxed{\sf{\pink{x^2 + 3x + 2}}}}}

So, Our Quadratic Equation is x² + 3x + 2.

\rule{150}3

Answered by Anonymous
7

 \huge \fcolorbox{red}{pink}{Solution :)}

Given ,

Sum of roots = -3

Product of roots = 2

We know that ,

 \large  \mathtt{\fbox{ {(x)}^{2} - (sum \: of \: roots)x  + (product \: of \: roots) }}

Substitute the known values , we get

(x)² - (-3)x + 2

(x)² + 3x + 2

Hence , the quadratic equation is (x)² + 3x + 2 = 0

______________ Keep Smiling ☺

Similar questions