Math, asked by sahastomar6079, 1 month ago

Form a Quadratic equation with real coefficients if one root is -1+2i

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that one root of the quadratic equation is- 1 + 2i.

Let assume that,

\rm :\longmapsto\:x =  - 1 + 2i

can be rewritten as

\rm :\longmapsto\:x  + 1= 2i

On squaring both sides, we get

\rm :\longmapsto\: {(x + 1)}^{2} =  {(2i)}^{2}

\rm :\longmapsto\: {x}^{2} + 1 + 2x = 4 {i}^{2}

\rm :\longmapsto\: {x}^{2} + 1 + 2x =  - 4 \:  \:  \:  \:  \:  \:  \:  \:  \{ \because \:  {i}^{2}  =  - 1 \}

\rm :\longmapsto\: {x}^{2} + 1 + 2x + 4 =0

\bf\implies \:\boxed{ \tt{ \:  {x}^{2}  + 2x + 5 = 0 \: }}

is the required Quadratic equation.

Alternative Method :-

Given that one root of the quadratic equation is- 1 + 2i.

We know, complex roots occur in conjugate pairs.

So, roots of the equation are

\rm :\longmapsto\: \alpha  =  - 1 + 2i

and

\rm :\longmapsto\:  \beta   =  - 1  -  2i

Now,

Consider,

\rm :\longmapsto\: \alpha  +  \beta

\rm \:  =  \: - 1 + 2i - 1 - 2i

\rm \:  =  \: -  \: 2

\rm \implies\:\boxed{ \tt{ \:  \alpha  +  \beta  =  -  \: 2 \: }}

Now, Consider

\rm :\longmapsto\: \alpha  \beta

\rm \:  =  \: ( - 1 + 2i)( - 1 - 2i)

\rm \:  =  \: {( - 1)}^{2} -  {(2i)}^{2}

\rm \:  =  \:1 -  {4i}^{2}

\rm \:  =  \:1 -  4 \times ( - 1)

\rm \:  =  \:1  +  4

\rm \:  =  \:5

\rm \implies\:\boxed{ \tt{ \:  \alpha  \beta  =   \: 5 \: }}

Now, Required Quadratic equation is given by

 \red{\rm :\longmapsto\:\boxed{ \tt{ \:  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0 \: }}}

So, on substituting the values, we get

\rm :\longmapsto\: {x}^{2} - ( - 2)x + 5 = 0

\bf\implies \:\boxed{ \tt{ \:  {x}^{2}  + 2x + 5 = 0 \: }}

is the required Quadratic equation

Similar questions