Math, asked by Anonymous, 8 months ago

Form a quadratic polynomial if :-
sum of zero = -1/2
product of zero = 1/3.​

Answers

Answered by tennetiraj86
10

Step-by-step explanation:

given \: that  \\  \: the \: sum \: of \: zeroes =   \frac{ - 1}{2}  \\  \: product \: of \: zeroes =  \frac{1}{3}  \\  \: we \: know \: that \:  \\  \: if \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: then \: the \: quadratic \: polynomial \: is \:  \\  \: k ({x}^{2}  - ( \alpha  +  \beta )x +   \alpha  \beta ) \\  \:  =  > k( {x}^{2}  - (  \frac{ - 1}{2} )x +  \frac{1}{3} ) \\  \:  =  > k( {x}^{2}  +  \frac{1}{2} x +  \frac{1}{3} ) \\  \:  =   >  \frac{k(6 {x}^{2} + 3x + 2) } {6}  \\  \: if \: k = 6 \: then \: the \: required \: polynomial \: is \\  \: 6 {x}^{2}  + 3x + 2

Similar questions