Math, asked by Tissyshakku9258, 10 months ago

Form a quadratic polynomial whose sum & product of the 0 are-1 & 2

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Equation=x^{2}+x+2=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:{  \implies Sum \: of \: zeroes = -1} \\  \\  \tt:  \implies Product \: of \: zeroes =  2  \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Quadratic \:equation = ?

• According to given question :

 \circ \:  \tt{Let \:  \alpha  \: and \:  \beta  \: be \: the \: zeroes} \\  \\   \tt \circ  \: sum \: of \: zeroes = -1\\  \\  \tt: \implies  \alpha  +  \beta  = -1 \\  \\  \tt \circ  \: product \: of \: zeroes =  2  \\  \\  \tt: \implies  \alpha  \beta  =  2 \\  \:  \\  \bold{As \: we \: know \: that}  \\  \tt:  \implies  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes)  = 0\\  \\ \tt:  \implies  {x}^{2}  - ( \alpha  +  \beta )x  +  \alpha  \beta  = 0 \\  \\  \text{Putting \: given \: values} \\ \tt:  \implies  {x}^{2}  - (-1)\times x + 2= 0 \\  \\  \green{\tt:  \implies {x}^{2}  +x +2  = 0}

Answered by EliteSoul
54

AnswEr:-

Quadratic polynomial = x² + x + 2

\rule{200}{1}

Given:-

☛ Sum of zeroes = -1

☛ Product of zeroes = 2

To find:-

☛ Quadratic polynomial = ?

Solution:-

Let the zeroes of polynomial be α & β

The standard form of an quadratic polynomial is :-

x² - (Sum of zeroes)x + Product of zeroes

x² - (α + β)x + αβ

Here,sum of zeroes = -1

∴ α + β = -1

And,product of zeroes = 2

∴ αβ = 2

\rule{200}{1}

⋆ QUADRATIC POLYNOMIAL:-

⇒ x² - (-1)x + (2)

⇒ x² + 1x + 2

x² + x + 2

∴ Quadratic polynomial = x² + x + 2

Similar questions