form a quadratic polynomial whose zeroes are 1/2 and 2/3
Answers
Answer:
_______________...❀♡❀...________________
_______________...❀♡❀...________________
Answer:
A quadratic polynomial whose zeroes are -\frac{1}{2}−
2
1
and \frac{2}{3}
3
2
is x^2-x-2=0x
2
−x−2=0
Step-by-step explanation:
To find : A quadratic polynomial whose zeroes are -\frac{1}{2}−
2
1
and \frac{2}{3}
3
2
?
Solution :
The roots of the quadratic equation ax^2+bx+c=0ax
2
+bx+c=0 are \alphaα and \betaβ .
So, Let \alpha=-\frac{1}{2}α=−
2
1
and \beta=\frac{2}{3}β=
3
2
The formula to get the equation is
x^2-(\alpha+\beta)x+\alpha\beta=0x
2
−(α+β)x+αβ=0
Substitute the values,
x^2-(-\frac{1}{2}+\frac{2}{3})x+(-\frac{1}{2})(\frac{2}{3})=0x
2
−(−
2
1
+
3
2
)x+(−
2
1
)(
3
2
)=0
x^2-\frac{1}{6}x-\frac{1}{3}=0x
2
−
6
1
x−
3
1
=0
x^2-x-2=0x
2
−x−2=0
Therefore, a quadratic polynomial whose zeroes are -\frac{1}{2}−
2
1
and \frac{2}{3}
3
2
is x^2-x-2=0x
2
−x−2=0