Math, asked by VεnusVεronίcα, 1 month ago

Form a quadratic polynomial whose zeroes are : (2+1/√2) and (2-1/√2)

» Don't give plagiarized answers!
» Don't spam!
» Answer with explanation!

Answers

Answered by houseoftutors1
7

Step-by-step explanation:

like it if it is useful

thank you

Attachments:
Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha  = 2 +  \dfrac{1}{ \sqrt{2} }

and

\rm :\longmapsto\:  \beta   = 2  -  \dfrac{1}{ \sqrt{2} }

Now, in order to find a quadratic polynomial, we have to first find sum of zeroes and product of zeroes.

Consider,

Sum of zeroes,

\rm :\longmapsto\: \alpha  + \beta

 \rm \:  =  \:  \: 2 + \dfrac{1}{ \sqrt{2} }  + 2 - \dfrac{1}{ \sqrt{2} }

 \rm \:  =  \:  \: 4

So,

\bf\implies \: \alpha  +  \beta  = 4 -  -  - (1)

Consider,

Product of zeroes,

\rm :\longmapsto\: \alpha  \beta

 \rm \:  =  \:  \: \bigg(2 + \dfrac{1}{ \sqrt{2} }  \bigg) \bigg(2 - \dfrac{1}{ \sqrt{2} }  \bigg)

 \rm \:  =  \:  \:  {2}^{2} -  { \bigg(\dfrac{1}{ \sqrt{2} }  \bigg)}^{2}

 \rm \:  =  \:  \: 4 - \dfrac{1}{2}

 \rm \:  =  \:  \: \dfrac{8 - 1}{2}

 \rm \:  =  \:  \: \dfrac{7}{2}

 \bf\implies \: \alpha  \beta   =  \:  \: \dfrac{7}{2}

Now,

Let assume that the required Quadratic polynomial be f(x).

So,

The required Quadratic polynomial is given by

\red{ \boxed{ \rm{ \: \rm :\longmapsto\:f(x) = k\bigg( {x}^{2} - ( \alpha  +  \beta)x +\alpha  \beta  \bigg) \: where \: k \ne \: 0}}}

On substituting the values, we get

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2} - 4x + \dfrac{7}{2}   \bigg) \: where \: k \ne \: 0

\bf :\longmapsto\:f(x) =  \dfrac{k}{2} \bigg( {2x}^{2} - 8x + 7   \bigg) \: where \: k \ne \: 0

Additional Information :-

\red{ \boxed{\rm :\longmapsto\: \rm{ \:  \alpha,\beta  \: are \: zeroes \: of \: a {x}^{2} +  bx + c \: then}}}

\green{ \boxed{ \rm{\rm :\longmapsto\: \:  \alpha  +  \beta  =  -  \: \dfrac{b}{a} }}}

\green{ \boxed{\rm :\longmapsto\: \rm{ \:  \alpha\beta  =  \: \dfrac{c}{a} }}}

\red{ \boxed{\rm :\longmapsto\: \rm{ \:  \alpha,\beta, \gamma   \: are \: zeroes \: of \: a {x}^{3} +  b {x}^{2}  + cx + d \: then}}}

\green{ \boxed{ \rm{\rm :\longmapsto\: \:  \alpha  +  \beta +  \gamma   =  -  \: \dfrac{b}{a} }}}

\green{ \boxed{ \rm{\rm :\longmapsto\: \:  \alpha  \beta  +  \beta \gamma  +  \gamma \alpha    =  \: \dfrac{c}{a} }}}

\green{ \boxed{ \rm{\rm :\longmapsto\: \:  \alpha  \beta \gamma   =  -  \: \dfrac{d}{a} }}}

Similar questions