Math, asked by adwaitpande02, 7 months ago

form all the polynomial whose zeros are 7 + 2 root 2 and 7 minus 2 root 2​

Answers

Answered by snehitha2
0

Answer:

k[x² - 14x + 41]

Step-by-step explanation:

Given roots are

(7 + 2√2) and (7 - 2√2)

⇒ Sum of zeroes = 7+2√2 + 7-2√2

                            = 7+7

                            = 14

⇒ Product of zeroes = (7+2√2)(7-2√2)

                                  = 7(7-2√2) + 2√2(7-2√2)

                                  = 49 - 14√2 + 14√2 - 4(2)

                                  = 49 - 8

                                  = 41

The quadratic polynomial is of the form

k[x² - (sum of zeroes)x + (product of zeroes)]

k[x² - 14x + 41]

where k is any constant.

You can put k = 1,2,3,.... , then we will get many (infinite) polynomials

⇒ k = 1,

the polynomial is x²-14x+41

⇒ k = 2,

the polynomial is 2[x² - 14x + 41]

                             2x² - 28x + 82

Like this, many polynomials can be found.

Hope this helps..!

Similar questions