Math, asked by lucky212212, 8 months ago

form differential equation of xy=ae^x+b^-x where ab are ordinary constants​

Answers

Answered by Shivampanwar2020
0

Step-by-step explanation:

x y = a e ^ { x } + b ^ { - x }

x y = a e ^ { x } + b ^ { - x }

\ln x y = \ln a + x - x \ln b

differetiate

\frac { 1 } { x y } ( y + x y ^ { \prime } ) = 1 - \ln b

differetiate again taking xy to rhs

y ^ { \prime } + y ^ { \prime } + x y ^ { \prime \prime } = ( y + x y ^ { \prime } ) ( 1 - \ln b )

now put value of (1- ln b ) from 2nd last eqn

2 y ^ { \prime } + x y ^ { \prime \prime } = \frac { ( y + x y ^ { \prime } ) ^ { 2 } } { x y }

this is a differential eqn of 2nd order.

Similar questions