Math, asked by kanimozhikanimozhi81, 23 hours ago

form PDE by eliminating arbitrary function from lx+my+nz = f (x^2+y^2+z^2)​

Answers

Answered by armaans5tha
0

Answer:

Correct option is

B

(1+(y  

1

)  

2

)  

3

=r  

2

(y  

2

)  

2

 

(x−a)  

2

+(y−b)  

2

=r  

2

 

By differentiating this equation, we get

2(x−a)+2(y−b)  

dx

dy

=0

a=x+(y−b)  

dx

dy

-Equation 1

Differentiating again, we get

0=1+(y−b)  

dx  

2

 

d  

2

y

+(  

dx

dy

)  

2

 

−b=  

dx  

2

 

d  

2

y

 

(−1−(  

dx

dy

)  

2

)

−y=  

y  

2

 

−1−y  

1

2

 

−y-Equation 2

Now, substituting the values of a & b,

in (x−a)  

2

+(y−b)  

2

=r  

2

, we get

(x−x−(y−b)  

dx

dy

)  

2

+(y−b)  

2

=r  

2

 

(y−b)  

2

(  

dx

dy

)  

2

+(y−b)  

2

=r  

2

 

1+y  

1

2

=  

(y−b)  

2

 

r  

2

 

 

and y−b=  

y  

2

 

−1−y  

1

2

 

 

1+y  

1

2

=  

(1+y  

1

2

)  

2

 

r  

2

y  

2

2

 

 

(1+y  

1

2

)(1+y  

1

2

)  

2

=r  

2

y  

2

2

 

(1+y  

1

2

)  

3

=r  

2

y  

2

2

Step-by-step explanation:

Similar questions