Math, asked by Sardorbek, 2 months ago

Form the differential equation by eliminating the arbitrary constant from the equation y= x^2-cx​

Attachments:

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathsf{y=x^2-c\,x}

\textbf{To find:}

\textsf{A differential equation by eliminating arbitrary constant c}

\textbf{Solution:}

\textsf{Differential equations are formed by eliminating}

\textsf{arbitrary constants in the equation}

\textsf{Consider,}

\mathsf{y=x^2-c\,x}----------(1)

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=2x-c}

\mathsf{\dfrac{dy}{dx}-2x=c}---------(2)

\mathsf{Using (2) in (1), we get}

\mathsf{y=x^2-\left(\dfrac{dy}{dx}-2x\right)x}

\mathsf{y=x^2-x\,\dfrac{dy}{dx}+2x^2}

\implies\boxed{\mathsf{y=3x^2-x\,\dfrac{dy}{dx}}}

\textsf{which is the required differential equation}

Answered by mahek77777
5

\huge\textbf{Given:}

\mathsf{y=x^2-c\,x}

\huge\textbf{To find:}

\textsf{A differential equation by eliminating arbitrary constant c}

\huge\textbf{Solution:}

\textsf{Differential equations are formed by eliminating}

\textsf{arbitrary constants in the equation}

\textsf{Consider,}

\mathsf{y=x^2-c\,x}----------(1)

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=2x-c}

\mathsf{\dfrac{dy}{dx}-2x=c}---------(2)

\mathsf{Using (2) in (1), we get}

\mathsf{y=x^2-\left(\dfrac{dy}{dx}-2x\right)x}

\mathsf{y=x^2-x\,\dfrac{dy}{dx}+2x^2}

\implies\boxed{\mathsf\red{y=3x^2-x\,\dfrac{dy}{dx}}}

Similar questions