Math, asked by bedasemanohar, 9 hours ago

Form the differential equation by
eliminating the arbitrary constants if Y
A sinx + B coSX​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \rm \: y = A \sin(x)  + B \cos(x)  \:  \: ...(i)

 \implies \rm \:  \frac{dy}{dx}  = A \cos(x)   -  B \sin(x)   \:  \: \\

 \implies \rm \:  \frac{d^{2} y}{dx^{2} }  =  - A \sin(x)   -  B \cos(x)   \:  \:\\

 \implies \rm \:  \frac{d^{2} y}{dx^{2} }  =  -  \{A \sin(x)    +   B \cos(x)  \}  \:  \:\\

 \implies \rm \:  \frac{d^{2} y}{dx^{2} }  =  - y    \:  \: \:  [from \:  \: (i)]\\

 \implies \rm \:  \frac{d^{2} y}{dx^{2} }   + y = 0    \:  \: \:\\

Similar questions