Form the equation if the sum of the two digits of a two digit number is 9. If9 is added to the number, the
digits are reversed, find the number.
Answers
Answer:
45
Step-by-step explanation:
Let the number be ab(=10a + b). In the same manner as 54 = 5(10) + 4, 47 = 4(10) + 7, etc.
Sum of digits = a + b = 9 ...(1)
When 9 is added, digits are reversed,
⇒ 10a + b + 9 = ba(= 10b + a)
⇒ 10a + b + 9 = 10b + a
⇒ 9a - 9b = - 9
⇒ a - b = - 1 ...(2)
Using, (1) and (2),
⇒ (a + b) + (a - b) = 9 + (-1)
⇒ 2a = 8 ⇒ a = 4
Thus, a + b = 9 ⇒ b = 5
Number is ab(=10a + b) = 45
Answer:
45
Step-by-step explanation:
Let the number be ab(=10a + b). In the same manner as 54 = 5(10) + 4, 47 = 4(10) + 7, etc.
Sum of digits = a + b = 9 ...(1)
When 9 is added, digits are reversed,
⇒ 10a + b + 9 = ba(= 10b + a)
⇒ 10a + b + 9 = 10b + a
⇒ 9a - 9b = - 9
⇒ a - b = - 1 ...(2)
Using, (1) and (2),
⇒ (a + b) + (a - b) = 9 + (-1)
⇒ 2a = 8 ⇒ a = 4
Thus, a + b = 9 ⇒ b = 5
Number is ab(=10a + b) = 45