Math, asked by subham89, 1 year ago

form the partial differential equation z=x^n.f(y/x)

Answers

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

The partial differential equation

 \displaystyle \sf{z =  {x}^{n} \: f \bigg(  \frac{y}{x} \bigg) }

EVALUATION

Here the given equation is

 \displaystyle \sf{z =  {x}^{n} \: f \bigg(  \frac{y}{x} \bigg) } \:  \:  -  -  - (1)

Differentiating both sides with respect to x partially we get

 \displaystyle \sf{  \frac{ \partial z}{ \partial x}  = n {x}^{n - 1} \: f \bigg(  \frac{y}{x} \bigg)  + {x}^{n} \: f '\bigg(  \frac{y}{x} \bigg).y. \bigg(  -  \frac{1}{ {x}^{2} } \bigg) }

 \displaystyle \sf{  \implies \:  \frac{ \partial z}{ \partial x}  = n {x}^{n - 1} \: f \bigg(  \frac{y}{x} \bigg)   - y {x}^{n - 2} \: f '\bigg(  \frac{y}{x} \bigg)} \:  \:  -  - (2)

Again Differentiating both sides of Equation 1 with respect to y partially we get

 \displaystyle \sf{  \frac{ \partial z}{ \partial y}  =  {x}^{n} \: f '\bigg(  \frac{y}{x} \bigg). \frac{1}{x}  }

 \displaystyle \sf{  \implies \:  \frac{ \partial z}{ \partial y}  =  {x}^{n - 1} \: f '\bigg(  \frac{y}{x} \bigg) \:  \:  -  -  - (3) }

From Equation 2 and Equation 3 we get

 \displaystyle \sf{ x \frac{ \partial z}{ \partial x}  + y \frac{ \partial z}{ \partial y} = n {x}^{n } \: f \bigg(  \frac{y}{x} \bigg)  }

 \displaystyle \sf{ \implies \:  x \frac{ \partial z}{ \partial x}  + y \frac{ \partial z}{ \partial y} = n z }

Hence the required partial differential equation is

 \boxed{ \:  \:  \displaystyle \sf{    x \frac{ \partial z}{ \partial x}  + y \frac{ \partial z}{ \partial y} = n z } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

(A) x only

(B) y only

(C) constant

(D) all of these

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

(A) variable seprable

(B) homogeneous

(C) exact

(D) none ...

https://brainly.in/question/38173619

Similar questions