Math, asked by sujinavittam, 9 months ago

form the pde by eliminating arbitrary constants and b from z=(x^2+a^2)(y^2+b^2)​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{z=(x^2+a^2)(y^2+b^2)}

\underline{\textbf{To find:}}

\textsf{A Partial differential equation by eliminating the constants a and b}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{z=(x^2+a^2)(y^2+b^2)}---------(1)

\textsf{Differentiate (1) partially with respect to 'x'}

\mathsf{\dfrac{{\partial}z}{{\partial}x}=(2x+0)(y^2+b^2)}

\mathsf{p=2x(y^2+b^2)}------(2)

\textsf{Differentiate (1) partially with respect to 'y'}

\mathsf{\dfrac{{\partial}z}{{\partial}y}=(x^2+a^2)(2y+0)}

\mathsf{q=2y(x^2+a^2)}------(3)

\textsf{Multiplying (1) and (2)}

\mathsf{pq=2x(y^2+b^2)\,{\times}\,2y(x^2+a^2)}

\mathsf{pq=4xy\,(x^2+a^2)(y^2+b^2)}

\mathsf{Using\;(1)}

\boxed{\mathsf{pq=4xyz}}

\textsf{which is the required PDE}

\underline{\textbf{Find more:}}

Find the second order partial derivatives of F(x.y) = (3x + 2y).4​

https://brainly.in/question/31686292  

Similar questions