Math, asked by llmayall, 7 months ago

form the polynomial whose zeroes are 2+1/√2,2-1/√ 2​

Answers

Answered by Anonymous
23

\huge{\underline{\underline{\sf{\pink{Answer:-}}}}}

the zeroes are are 2+1/√2,2-1/√ 2

sum of the zeroes,

(2 +  \frac{1}{ \sqrt{2} } ) + (2 -  \frac{1}{ \sqrt{2} } )

 = 2 +  \frac{1}{ \sqrt{2} }  + 2 -  \frac{1}{ \sqrt{2} }

 = 2 + 2 +  \frac{1}{ \sqrt{2} }  -  \frac{1}{ \sqrt{2} }

 = 4

product of the zeroes,

(2 +  \frac{1}{ \sqrt{2} } ) \times (2 -  \frac{1}{ \sqrt{2} } )

 = 2(2 -  \frac{1}{ \sqrt{2} } ) +  \frac{1}{ \sqrt{2} }(2 -  \frac{1}{ \sqrt{2} } )

 = 2(2).2( \frac{1}{ \sqrt{2} } ) +  \frac{1}{ \sqrt{2} } (2) -  \frac{1}{ \sqrt{2} } ( \frac{1}{ \sqrt{2} } )

 = 4 -  \frac{2}{ \sqrt{2} }  +  \frac{2}{ \sqrt{2} }  -  \frac{1}{2}

 = 4 -  \frac{1}{2}

 =  \frac{8 - 1}{2}

 =  \frac{7}{2}

the required polynomial→ x^2-(sum of the zeroes)x+product of the zeroes

⟹ {x}^{2}  - 4x +  \frac{7}{2}

⟹2 {x}^{2}  + 8x + 7

Similar questions