Math, asked by mjahnavi, 9 months ago

form the polynomial whose zeroes are
2 +  \frac{1}{ \sqrt{2} }
and
2 -  \frac{1}{ \sqrt{2} }

Answers

Answered by tennetiraj86
1

Answer:

answer for the given problem is given

Attachments:
Answered by rocky200216
8

\sf\underbrace{\red{SOLUTION:-}}

✪ The form of polynomial Equation is ,

\checkmark\:\bf{\underline{\purple{\boxed{x^2\:-(sum\:of\:roots)x\:+(product\:of\:roots)\:=\:0\:}}}}

GIVEN :-

  • two roots are,

  1. \rm{(2\:+\:{\dfrac{1}{\sqrt{2}}})\:}
  2. \rm{(2\:-\:{\dfrac{1}{\sqrt{2}}})\:}

CALCULATION :-

(✧) Sum of roots is,

\rm{\:=\:2\:+\:\dfrac{1}{\sqrt{2}}\:+\:2\:-\:\dfrac{1}{\sqrt{2}}\:}

\rm{\:=\:4\:}

(✧) Products of roots is,

 = (2 +  \frac{1}{ \sqrt{2} } ) \times (2 -  \frac{1}{ \sqrt{2} } ) \\  \\  = 4 -  \frac{1}{2}  \\  \\  =  \frac{7}{2}

☞ So, the polynomial form is,

\rm{x^2\:-\:(4)x\:+\:\dfrac{7}{2}\:=\:0\:}

\bigstar\:\rm{\underline{\green{\boxed{2x^2\:-\:8x\:+\:7\:=\:0\:}}}}

Similar questions