Math, asked by rohitchauhan70, 7 months ago

Form the quadratic equation from the roots given below.

2 - √5, 2 + √5





please give the answer fast friends please help me fast ​

Answers

Answered by ItzDαrkHσrsє
10

GIVEN:

  • One of roots of quadratic equation are 2 - √5 & 2 + √5.

To Find:

  • Quadratic equation.

Solution:

let us consider here,

\bf\alpha{ = 2  -   \sqrt{5} }

\bf\beta{ =  2 +  \sqrt{5} }

Now,

\star \: {\sf\green{Sum \: of \: roots = \alpha  +  \beta}}

\bf \implies \alpha\ + \beta =\ (2\ -\ \sqrt{5})\ + (2\ +\ \sqrt{5})

\bf:\implies{\alpha + \beta = 2 + 2}

\sf\star  \: \underbrace{\alpha + \beta = 4}  \: \star

\star \: {\sf\green{Product \: of \: roots = \alpha \times  \beta}}

\bf \implies \alpha\ \times\ \beta =\ (2\ -\ \sqrt{5})\ \times\ (2\ +\ \sqrt{5})

\bf:\implies{\alpha  \times  \beta =4 - 5}

\sf\star  \: \underbrace{\alpha  \times  \beta =  - 1}  \: \star

We know that,

\star \: {\sf\green{Quadratic \: Equation = {x }^{2}  -  (\alpha  +   \beta)x + (\alpha   \times   \beta = 0}}

\bf:\implies{  {x}^{2} - 4 \times x - 1 = 0 }

\sf\star  \: \underbrace{ {x}^{2} - 4x - 1 = 0 }  \: \star

Hence,

  • Quadratic Equation is - 4x - 1 = 0.
Answered by anurag2147
1

they are roots 2 - √5, 2 + √5 then

sum of roots= a+b =( 2 - √5) +( 2 + √5) = 4

product of roots = a×b = (2 - √5)×(2 + √5)

= 2²-√5²= 4 -5= -1

standard form is x² -(a+b)x + ab =0

x² -4x -1 =0

Similar questions