Math, asked by sawantshatakshi1126, 7 months ago

form the quadratic equation if its roots are -13 and 6​

Answers

Answered by prince5132
3

GIVEN :-

  • Roots of a quadratic equation are -13 and 6.

TO FIND :-

  • The required quadratic equation.

SOLUTION :-

As we know that the quadratic polynomial is given by,

 \\  :  \implies \displaystyle \sf \: x ^{2}  - ( \alpha  +  \beta )x + ( \alpha  \beta ) = 0 \\  \\

  • ɑ = -13
  • β = 6

 \\  \\  :  \implies \displaystyle \sf \: x ^{2}  - ( - 13 + 6)x + ( - 13 \times 6) = 0 \\  \\  \\

 :  \implies \displaystyle \sf \: x ^{2}  - ( - 7)x + ( - 78) = 0 \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf \bold{ \: x ^{2}  + 7x - 78 = 0}}} \\  \\

Hence the required polynomial is x² + 7x - 78 = 0.

ADDITIONAL INFORMATION :-

\boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Quadratic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^\sf2$ \sf + bx + c}\\\sf with zeroes \alpha\:\sf and\:\beta \\\\\\ {\textcircled{\footnotesize1}} \:\:\alpha +\beta= \dfrac{ - \:b}{a}\:\:\bigg\lgroup\bf Sum\:of\:Zeroes\bigg\rgroup \\\\\\{\textcircled{\footnotesize2}} \: \:\alpha \beta= \sf\dfrac{c}{a}\:\:\bigg\lgroup\bf Product\:of\:Zeroes\bigg\rgroup\end{minipage}}

Answered by sara122
1

Answer:

\huge\mathfrak\red{\bold{\underline{☯︎{Lεศɢนε \: σʄ \: Mıŋɖร}☯︎ }}}\huge\underbrace\mathscr\color{lime}{ †\: Solution:–}

GIVEN :-

  • Roots of a quadratic equation are -13 and 6.

TO FIND :-

  • The required quadratic equation.

SOLUTION :-

As we know that the quadratic polynomial is given by,

 \sf\green{=  > x^{2}  -  ( \alpha  +  \beta )x + ( \alpha  \beta ) = 0}

  •  </u></em></strong><strong><em><u>\</u></em></strong><strong><em><u>p</u></em></strong><strong><em><u>i</u></em></strong><strong><em><u>n</u></em></strong><strong><em><u>k</u></em></strong><strong><em><u>\alpha  =  - 13
  •  </u></em></strong><strong><em><u>\</u></em></strong><strong><em><u>p</u></em></strong><strong><em><u>i</u></em></strong><strong><em><u>n</u></em></strong><strong><em><u>k</u></em></strong><strong><em><u> </u></em></strong><strong><em><u>\beta  = 6

 \sf </u></em></strong><strong><em><u>\</u></em></strong><strong><em><u>r</u></em></strong><strong><em><u>e</u></em></strong><strong><em><u>d</u></em></strong><strong><em><u>{</u></em></strong><strong><em><u>=  &gt; x {}^{2}  - ( - 13 + 6)x + ( - 13 \times 6) = 0</u></em></strong><strong><em><u>}</u></em></strong><strong><em><u>

  \sf </u></em></strong><strong><em><u>\</u></em></strong><strong><em><u>p</u></em></strong><strong><em><u>u</u></em></strong><strong><em><u>r</u></em></strong><strong><em><u>p</u></em></strong><strong><em><u>l</u></em></strong><strong><em><u>e</u></em></strong><strong><em><u>{</u></em></strong><strong><em><u>=  &gt;  {x}^{2}  - ( - 7)x + ( - 78) = 0</u></em></strong><strong><em><u>}</u></em></strong><strong><em><u>

 \sf </u></em></strong><strong><em><u>\</u></em></strong><strong><em><u>p</u></em></strong><strong><em><u>i</u></em></strong><strong><em><u>n</u></em></strong><strong><em><u>k</u></em></strong><strong><em><u> </u></em></strong><strong><em><u>{</u></em></strong><strong><em><u>=  &gt;  {x}^{2}  + 7x - 78 = 0</u></em></strong><strong><em><u>}</u></em></strong><strong><em><u>

\huge\orange{\boxed{\blue{\bold{\fcolorbox{orange}{yellow}{\orange{Hope\:It\:Helps༒}}}}}}\huge\orange{\underline\blue{\underline\green{\underline{ \mathtt\blue{Please}\:\mathtt\green{Mark}\:\mathtt\orange{As}}}}}

\huge\orange{\underline\blue{\underline\green{\underline{ \mathtt\red{Brilliant}\:\mathtt\purple{Answers}}}}}

\huge\orange{\underline\blue{\underline\green{\underline{ \mathcal\orange{Thank}\:\mathcal\green{You}}}}₪}

Similar questions