Math, asked by ChinglembM, 10 months ago

form the quadratic equation whose roots are 3+√3 by 2and 3-√3 by 2​

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Equation=2x^{2}-6x+3=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies Roots\:are =\frac{3+\sqrt{3}}{2}\:and\:\frac{3-\sqrt{3}}{2} \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Quadratic \:equation = ?

• According to given question :

 \circ\:\tt{let \:  \alpha  \: and \:  \beta  \: are \: roots} \\  \tt:  \implies sum \: of \: zeroes =  \alpha  +  \beta  \\  \\ \tt:  \implies sum \: of \: zeroes =  \frac{3 +  \sqrt{3} }{2}  +  \frac{3 -  \sqrt{3} }{2}  \\  \\ \tt:  \implies sum \: of \: zeroes =  \frac{3  +  \sqrt{3} + 3 -  \sqrt{3}  }{2}  \\  \\ \tt:  \implies sum \: of \: zeroes = 3 \\  \\ \tt:  \implies product \: of \: zeroes =  \frac{3 +  \sqrt{3} }{2} \times  \frac{3 -  \sqrt{3} }{2}   \\  \\ \tt:  \implies product \: of \: zeroes =  \frac{ {3}^{2} -  (\sqrt{3})^{2}   }{4}  \\  \\ \tt:  \implies product \: of \: zeroes =  \frac{9 - 3}{4}  \\  \\ \tt:  \implies product \: of \: zeroes =  \frac{3}{2}

\bold{As \: we \: know \: that}  \\  \tt:  \implies  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes)  = 0\\  \\ \tt:  \implies  {x}^{2}  - ( \alpha  +  \beta )x  +  \alpha  \beta  = 0 \\  \\  \text{Putting \: given \: values} \\ \tt:  \implies  {x}^{2}  - 3\times x + \frac{3}{2}= 0 \\  \\  \green{\tt:  \implies 2{x}^{2}  -6x +3  = 0}

Similar questions