Math, asked by harshitgupta4242, 11 months ago

form the quadratic equation whose roots are √3 and 3√3

Answers

Answered by Anonymous
7

<b><body bgcolor="black"><font color="white">

\textsf{Hey\:Brainly\:user}

\textsf{Here\:is\:answer}

_________________________________

\texttt{Question}

form the quadratic equation whose roots are √3 and 3√3

\texttt{Answer}

Given,

 \alpha  =  \sqrt{3}

 \beta  = 3 \sqrt{3}

sum \: of  \: roots( \alpha  +  \beta ) =  \sqrt{3}  + 3 \sqrt{3}  = 4 \sqrt{3}

product \: of \: the \: roots = ( \alpha  \beta ) =  \sqrt{3} (3 \sqrt{3)}

Quadratic equation

k(x {}^{2}  - ( \alpha  +  \beta )x + \alpha  \beta )

k(x {}^{2}  - (4 \sqrt{3)}x +   \sqrt{3} (3 \sqrt{3)} )

k(x {}^{2}  - 4 \sqrt{3}x + 9)

let \: k = 1

x {}^{2}  - 4 \sqrt{3}x+ 9

Answered by Itsritu
5

Answer:

 \alpha  =  \sqrt{3}

 \beta  = 3 \sqrt{3}

the \: sum \: of \: roots \: ( \alpha  +  \:  \beta ) =  \sqrt{3} + 3 \sqrt{3}  = 4 \sqrt \: {3} .

product \: of \: the \: roots \:  =  (\alpha  \beta ) =  \sqrt{3}(  \: 3 \sqrt{3} ).

quadratic \: equation \:

k( {x}^{2}  - ( \alpha   + \beta ) x \:  +  \alpha  \beta .

k( {x}^{2} - 4\sqrt{3}  )x \:  +  \:  \sqrt{3}(3 \sqrt{3} ) .

k(x {}^{2}  - 4 \sqrt{3}  + 9.

let \: k \:  = 1.

 {x}^{2}  - 4 \sqrt{3}x \:  + 9.

#answerwithquality #BAL.

Similar questions