Math, asked by mittalray, 9 months ago

form the quadratic equation whose zeroes are -4/5 and 1/3​

Answers

Answered by hipsterizedoll410
2

Answer: 15x²+7x-4.

Given:

\sf \alpha=-\dfrac{4}{5}

\sf \beta=-\dfrac{1}{3}

To find:

\sf The\:quadratic\:equation.

Formula used:

\boxed{\sf x^2-(\alpha+\beta)x+\alpha\beta=0}

Explanation:

\sf Sum\:of\:zeroes(\alpha+\beta)=-\dfrac{4}{5}+\dfrac{1}{3}  =-\dfrac{7}{15}

\sf Product\:of\:zeroes(\alpha\beta)=-\dfrac{4}{5}\times\dfrac{1}{3}  =-\dfrac{4}{15}

\sf Now,

\Rightarrow{\sf x^2-\bigg(-\dfrac{7}{15} \bigg)x+\bigg(-\dfrac{4}{15}\bigg)=0

\Rightarrow{\sf x^2-\bigg(-\dfrac{7x}{15} \bigg)-\dfrac{4}{15}=0

\Rightarrow{\sf15x^2+{7x}-\dfrac{4}{15}=0

\Rightarrow\boxed{\sf15x^2+7x-4=0}

Therefore, the quadratic equation is 15x²+7x-4.

Similar questions