Math, asked by smganeshgowda, 11 months ago

form the quadratic polynomial whose zeroes are 1 and -1

Answers

Answered by potaganiharshapa9p16
4

Answer:

we can form p

a quadratic polynomials with the given two zeros in two methods

1 st method

(x-1)(x+1)

x^2-1 is the polynomial

and the 2nd method is

if a = -1; b= 1

x^2 -( a+b ) + a*b

x^2 -(0) + (-1)

so the polynomial is x^2 - 1

plZz follow me and thank u

Answered by Anonymous
4

❏ SolutioN :

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\blacksquare\:\:\footnotesize{\underline{\underline{Given}}}

\footnotesize{1st\:zero = 1}

\footnotesize{2'nd\:zero = -1}

\blacksquare\:\:\footnotesize{\underline{\underline{To\: Find}}}

\footnotesize{find \:the\: quadratic\: equation}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\footnotesize{\text{we know that for a quadratic equation }if\: \alpha\: and\: \beta}

\footnotesize{ \text{are the zeroes of the equation then the quadratic equation is :}}

\longrightarrow\footnotesize{ x^2-(\alpha+\beta)x+\alpha\beta=0}

\footnotesize{\alpha+\beta=(-1)+(1)=0\:and\: \alpha\beta = (-1)(1)=-1 }

\therefore\footnotesize{Quadratic \: polynomial\:is \:,}

\footnotesize{=x^2-(0)x+(-1)}

\footnotesize{\boxed{=x^2-1}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions