Form the quadratic polynomial whose zeroes are 1by3 and 1by3
Answers
Answered by
2
AnsWer :
9x² - 6x + 1.
Solution :
We have,
Let Zeros be
- a = 1/3.
- b = 1/3.
A/Q,
K ( x² - Sx + P )
- K ( Contant term )
- S ( Sum of zeros )
- P ( Product of zeros )
For Sum of zeros.
=> a + b = 1/3 + 1/3
=> a + b = 2/3.
For Product of zeros.
=> ab = 1/3 * 1/3.
=> ab = 1/9.
Putting value,We get.
=> K ( x² - ( 2/3 )x + 1/9
=> k ( 9x² - 6x + 1 )
Let's Verify :
We have, Equation.
=> 9x² - 6x + 1 = 0.
=> 9x² - 3x - 3x + 1 = 0.
=> 3x( 3x - 1 ) - 1( 3x - 1 ) = 0.
=> ( 3x - 1 )( 3x - 1 ) = 0.
Either,
=> x = 1/3 Or, x = 1/3.
Answered by
2
Step-by-step explanation:
AnsWer :
9x² - 6x + 1.
Solution :
We have,
Let Zeros be
a = 1/3.
b = 1/3.
A/Q,
K ( x² - Sx + P )
K ( Contant term )
S ( Sum of zeros )
P ( Product of zeros )
For Sum of zeros.
=> a + b = 1/3 + 1/3
=> a + b = 2/3.
For Product of zeros.
=> ab = 1/3 * 1/3.
=> ab = 1/9.
Putting value,We get.
=> K ( x² - ( 2/3 )x + 1/9
=> k ( 9x² - 6x + 1 )
Let's Verify :
We have, Equation.
=> 9x² - 6x + 1 = 0.
=> 9x² - 3x - 3x + 1 = 0.
=> 3x( 3x - 1 ) - 1( 3x - 1 ) = 0.
=> ( 3x - 1 )( 3x - 1 ) = 0.
Either,
=> x = 1/3 Or, x = 1/3.
Similar questions