Math, asked by Anonymous, 4 months ago

form the quadratic polynomial whose zeros are 6/5 and 4/25

Answers

Answered by ajay8949
0

 \alpha   =  \frac{6}{5} \\  \beta  =  \frac{4}{25}

 \alpha +   \beta   =  \frac{6}{5}  +  \frac{4}{25}  =  \frac{30 + 4}{25} =   \boxed{\frac{34}{25}}

 \alpha  \beta  =  \frac{6}{5}  \times  \frac{4}{25}  =  \boxed{ \frac{24}{125} }

a \: quadratic \: polynomial \: is \: in \: form

 \:  \:  \:  \:  \:  \:  \: k( {x}^{2}  -  (\alpha   + \beta)x +  \alpha  \beta )

k( {x}^{2}  -  \frac{34}{25} x +  \frac{24}{125} )

 \frac{1}{125} (125 {x}^{2}  - 170x + 24) \\ hence  \\ \: polynomial \: is \: (125 {x}^{2}  - 170x + 24)

\mathcal\orange{Please\:mark\:as\:brainliest.....}

Similar questions